High Dimensional
High-dimensional data analysis focuses on extracting meaningful information and building predictive models from datasets with numerous variables, often exceeding the number of observations. Current research emphasizes developing computationally efficient algorithms, such as stochastic gradient descent and its variants, and novel model architectures like graph neural networks and deep learning approaches tailored to handle the unique challenges posed by high dimensionality, including issues of sparsity and missing data. These advancements are crucial for addressing complex problems across diverse fields, including scientific modeling, robotics, and financial risk assessment, where high-dimensional data are increasingly prevalent.
Papers
May 16, 2022
May 14, 2022
May 7, 2022
May 3, 2022
May 1, 2022
April 28, 2022
April 26, 2022
April 25, 2022
April 24, 2022
April 23, 2022
April 19, 2022
April 16, 2022
April 14, 2022
April 13, 2022
April 9, 2022