High Dimensional
High-dimensional data analysis focuses on extracting meaningful information and building predictive models from datasets with numerous variables, often exceeding the number of observations. Current research emphasizes developing computationally efficient algorithms, such as stochastic gradient descent and its variants, and novel model architectures like graph neural networks and deep learning approaches tailored to handle the unique challenges posed by high dimensionality, including issues of sparsity and missing data. These advancements are crucial for addressing complex problems across diverse fields, including scientific modeling, robotics, and financial risk assessment, where high-dimensional data are increasingly prevalent.
Papers
February 3, 2024
February 2, 2024
January 31, 2024
January 30, 2024
January 29, 2024
January 26, 2024
January 24, 2024
January 22, 2024
January 18, 2024
January 17, 2024
January 9, 2024
January 8, 2024
January 5, 2024
January 3, 2024
January 1, 2024
December 30, 2023