High Explainability
High explainability in artificial intelligence (AI) aims to make the decision-making processes of complex models, such as large language models and deep neural networks, more transparent and understandable. Current research focuses on developing both intrinsic (built-in) and post-hoc (added after training) explainability methods, often employing techniques like attention mechanisms, feature attribution, and counterfactual examples to interpret model outputs across various modalities (text, images, audio). This pursuit is crucial for building trust in AI systems, particularly in high-stakes domains like medicine and finance, and for ensuring fairness, accountability, and responsible AI development.
Papers
From Redundancy to Relevance: Information Flow in LVLMs Across Reasoning Tasks
Xiaofeng Zhang, Yihao Quan, Chen Shen, Xiaosong Yuan, Shaotian Yan, Liang Xie, Wenxiao Wang, Chaochen Gu, Hao Tang, Jieping Ye
Logic-Based Explainability: Past, Present & Future
Joao Marques-Silva
I've got the "Answer"! Interpretation of LLMs Hidden States in Question Answering
Valeriya Goloviznina, Evgeny Kotelnikov