Image Segmentation
Image segmentation, the process of partitioning an image into meaningful regions, aims to accurately delineate objects or areas of interest within a visual scene. Current research heavily emphasizes leveraging foundation models like Segment Anything Model (SAM) and its variants, often incorporating adaptations such as dual-branch architectures or efficient adapters to improve performance on specific domains (e.g., medical imaging, remote sensing) and address limitations like memory consumption. These advancements are significantly impacting diverse fields, from medical diagnosis and industrial inspection to autonomous driving and cultural heritage preservation, by enabling more accurate, efficient, and automated image analysis.
Papers
Fire Dynamic Vision: Image Segmentation and Tracking for Multi-Scale Fire and Plume Behavior
Daryn Sagel, Bryan Quaife
SAM2-UNet: Segment Anything 2 Makes Strong Encoder for Natural and Medical Image Segmentation
Xinyu Xiong, Zihuang Wu, Shuangyi Tan, Wenxue Li, Feilong Tang, Ying Chen, Siying Li, Jie Ma, Guanbin Li
Segment anything model 2: an application to 2D and 3D medical images
Haoyu Dong, Hanxue Gu, Yaqian Chen, Jichen Yang, Maciej A. Mazurowski
SAM 2: Segment Anything in Images and Videos
Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, Christoph Feichtenhofer