Imitation Learning
Imitation learning aims to train agents to mimic expert behavior by learning from observational data, primarily focusing on efficiently transferring complex skills from humans or other advanced controllers to robots. Current research emphasizes improving data efficiency through techniques like active learning, data augmentation, and leveraging large language models to provide richer context and handle failures. This field is crucial for advancing robotics, autonomous driving, and other areas requiring complex control policies, as it offers a more data-driven and potentially less labor-intensive approach than traditional programming methods.
Papers
Enhancing Online Reinforcement Learning with Meta-Learned Objective from Offline Data
Shilong Deng, Zetao Zheng, Hongcai He, Paul Weng, Jie Shao
Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning
Juntao Ren, Priya Sundaresan, Dorsa Sadigh, Sanjiban Choudhury, Jeannette Bohg
Learning Novel Skills from Language-Generated Demonstrations
Ao-Qun Jin, Tian-Yu Xiang, Xiao-Hu Zhou, Mei-Jiang Gui, Xiao-Liang Xie, Shi-Qi Liu, Shuang-Yi Wang, Yue Cao, Sheng-Bin Duan, Fu-Chao Xie, Zeng-Guang Hou
Student-Informed Teacher Training
Nico Messikommer, Jiaxu Xing, Elie Aljalbout, Davide Scaramuzza