Imitation Learning
Imitation learning aims to train agents to mimic expert behavior by learning from observational data, primarily focusing on efficiently transferring complex skills from humans or other advanced controllers to robots. Current research emphasizes improving data efficiency through techniques like active learning, data augmentation, and leveraging large language models to provide richer context and handle failures. This field is crucial for advancing robotics, autonomous driving, and other areas requiring complex control policies, as it offers a more data-driven and potentially less labor-intensive approach than traditional programming methods.
Papers
Causal Imitative Model for Autonomous Driving
Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi
Creating Multimodal Interactive Agents with Imitation and Self-Supervised Learning
DeepMind Interactive Agents Team, Josh Abramson, Arun Ahuja, Arthur Brussee, Federico Carnevale, Mary Cassin, Felix Fischer, Petko Georgiev, Alex Goldin, Mansi Gupta, Tim Harley, Felix Hill, Peter C Humphreys, Alden Hung, Jessica Landon, Timothy Lillicrap, Hamza Merzic, Alistair Muldal, Adam Santoro, Guy Scully, Tamara von Glehn, Greg Wayne, Nathaniel Wong, Chen Yan, Rui Zhu