Information Bottleneck
The Information Bottleneck (IB) principle aims to learn compressed data representations that retain only information relevant to a specific task, discarding irrelevant details and noise. Current research focuses on applying IB to diverse machine learning problems, including multi-task learning, causal inference, and improving the robustness and interpretability of neural networks (e.g., through graph neural networks and variational autoencoders). This framework is proving valuable for enhancing model efficiency, generalization, fairness, and interpretability across various applications, from molecular dynamics simulations to natural language processing and image generation.
Papers
Combating Bilateral Edge Noise for Robust Link Prediction
Zhanke Zhou, Jiangchao Yao, Jiaxu Liu, Xiawei Guo, Quanming Yao, Li He, Liang Wang, Bo Zheng, Bo Han
Dynamic Multimodal Information Bottleneck for Multimodality Classification
Yingying Fang, Shuang Wu, Sheng Zhang, Chaoyan Huang, Tieyong Zeng, Xiaodan Xing, Simon Walsh, Guang Yang