Information Gain
Information gain, a core concept in information theory, quantifies the reduction in uncertainty achieved by acquiring new information. Current research focuses on optimizing information gain in diverse applications, including robotic exploration (using probabilistic models and deep learning for efficient map building), causal inference (developing privacy-preserving methods for merging datasets), and active learning (designing algorithms that prioritize data acquisition to maximize learning efficiency). These advancements are improving the efficiency and robustness of various systems, from autonomous robots navigating unknown environments to large language models performing more effectively in question answering and other tasks.
Papers
Modern Information Technologies in Scientific Research and Educational Activities
Kyrylo Malakhov, Vadislav Kaverinskiy, Liliia Ivanova, Oleksandr Romanyuk, Oksana Romaniuk, Svitlana Voinova, Sergii Kotlyk, Oksana Sokolova
MEXGEN: An Effective and Efficient Information Gain Approximation for Information Gathering Path Planning
Joshua Chesser, Thuraiappah Sathyan, Damith C. Ranasinghe