Information Retrieval
Information retrieval (IR) focuses on efficiently finding relevant documents or information within large datasets in response to user queries. Current research emphasizes improving retrieval accuracy and efficiency through advancements in semantic understanding, particularly using multimodal data (text, images, tables) and advanced embedding models within retrieval-augmented generation (RAG) frameworks. These improvements are crucial for various applications, including search engines, question answering systems, and knowledge-based applications across diverse domains like healthcare and legal research, ultimately enhancing access to and understanding of information.
Papers
A Survey of Controllable Learning: Methods and Applications in Information Retrieval
Chenglei Shen, Xiao Zhang, Teng Shi, Changshuo Zhang, Guofu Xie, Jun Xu
Zero-shot Persuasive Chatbots with LLM-Generated Strategies and Information Retrieval
Kazuaki Furumai, Roberto Legaspi, Julio Vizcarra, Yudai Yamazaki, Yasutaka Nishimura, Sina J. Semnani, Kazushi Ikeda, Weiyan Shi, Monica S. Lam
\'Evaluation des capacit\'es de r\'eponse de larges mod\`eles de langage (LLM) pour des questions d'historiens
Mathieu Chartier, Nabil Dakkoune, Guillaume Bourgeois, Stéphane Jean
Pistis-RAG: Enhancing Retrieval-Augmented Generation with Human Feedback
Yu Bai, Yukai Miao, Li Chen, Dawei Wang, Dan Li, Yanyu Ren, Hongtao Xie, Ce Yang, Xuhui Cai
RE-AdaptIR: Improving Information Retrieval through Reverse Engineered Adaptation
William Fleshman, Benjamin Van Durme
APEER: Automatic Prompt Engineering Enhances Large Language Model Reranking
Can Jin, Hongwu Peng, Shiyu Zhao, Zhenting Wang, Wujiang Xu, Ligong Han, Jiahui Zhao, Kai Zhong, Sanguthevar Rajasekaran, Dimitris N. Metaxas
SEC-QA: A Systematic Evaluation Corpus for Financial QA
Viet Dac Lai, Michael Krumdick, Charles Lovering, Varshini Reddy, Craig Schmidt, Chris Tanner
DIRAS: Efficient LLM Annotation of Document Relevance in Retrieval Augmented Generation
Jingwei Ni, Tobias Schimanski, Meihong Lin, Mrinmaya Sachan, Elliott Ash, Markus Leippold
PromptDSI: Prompt-based Rehearsal-free Instance-wise Incremental Learning for Document Retrieval
Tuan-Luc Huynh, Thuy-Trang Vu, Weiqing Wang, Yinwei Wei, Trung Le, Dragan Gasevic, Yuan-Fang Li, Thanh-Toan Do
Debate as Optimization: Adaptive Conformal Prediction and Diverse Retrieval for Event Extraction
Sijia Wang, Lifu Huang