Instance Segmentation
Instance segmentation, a computer vision task, aims to identify and delineate individual objects within an image or point cloud, going beyond simple object detection by providing precise pixel-level masks. Current research emphasizes improving efficiency and accuracy, particularly in challenging scenarios like dense object arrangements, limited data, and noisy annotations; popular approaches involve transformer-based models, prototype-based methods, and techniques leveraging self-supervised learning or language-vision prompts. This field is crucial for diverse applications, including medical image analysis, autonomous driving, agricultural monitoring, and remote sensing, enabling automated analysis and improved decision-making in various domains.
Papers
The Endoscapes Dataset for Surgical Scene Segmentation, Object Detection, and Critical View of Safety Assessment: Official Splits and Benchmark
Aditya Murali, Deepak Alapatt, Pietro Mascagni, Armine Vardazaryan, Alain Garcia, Nariaki Okamoto, Guido Costamagna, Didier Mutter, Jacques Marescaux, Bernard Dallemagne, Nicolas Padoy
All for One, and One for All: UrbanSyn Dataset, the third Musketeer of Synthetic Driving Scenes
Jose L. Gómez, Manuel Silva, Antonio Seoane, Agnès Borrás, Mario Noriega, Germán Ros, Jose A. Iglesias-Guitian, Antonio M. López
SoftCTM: Cell detection by soft instance segmentation and consideration of cell-tissue interaction
Lydia A. Schoenpflug, Viktor H. Koelzer
Panoptica -- instance-wise evaluation of 3D semantic and instance segmentation maps
Florian Kofler, Hendrik Möller, Josef A. Buchner, Ezequiel de la Rosa, Ivan Ezhov, Marcel Rosier, Isra Mekki, Suprosanna Shit, Moritz Negwer, Rami Al-Maskari, Ali Ertürk, Shankeeth Vinayahalingam, Fabian Isensee, Sarthak Pati, Daniel Rueckert, Jan S. Kirschke, Stefan K. Ehrlich, Annika Reinke, Bjoern Menze, Benedikt Wiestler, Marie Piraud
PartSLIP++: Enhancing Low-Shot 3D Part Segmentation via Multi-View Instance Segmentation and Maximum Likelihood Estimation
Yuchen Zhou, Jiayuan Gu, Xuanlin Li, Minghua Liu, Yunhao Fang, Hao Su