Jina Embeddings
Jina embeddings are vector representations of data, primarily text and images, designed to capture semantic meaning and relationships for improved information retrieval and downstream tasks. Current research focuses on enhancing embedding quality through novel loss functions (e.g., SimO loss for fine-grained contrastive learning), developing efficient architectures like decoupled embeddings for handling large datasets and multilingual contexts, and exploring non-Euclidean spaces (e.g., hyperbolic space) to better represent complex relationships. These advancements are improving performance in diverse applications, including recommendation systems, question answering, and even cybersecurity by enabling more accurate similarity searches and more effective model training.
Papers
EmbeddingTree: Hierarchical Exploration of Entity Features in Embedding
Yan Zheng, Junpeng Wang, Chin-Chia Michael Yeh, Yujie Fan, Huiyuan Chen, Liang Wang, Wei Zhang
Literal-Aware Knowledge Graph Embedding for Welding Quality Monitoring: A Bosch Case
Zhipeng Tan, Baifan Zhou, Zhuoxun Zheng, Ognjen Savkovic, Ziqi Huang, Irlan-Grangel Gonzalez, Ahmet Soylu, Evgeny Kharlamov