Kernel Ridge Regression
Kernel ridge regression (KRR) is a powerful non-parametric regression technique aiming to learn complex relationships between data by minimizing a regularized empirical risk. Current research focuses on improving KRR's scalability and efficiency for large datasets, including exploring distributed algorithms and low-rank approximations, as well as addressing challenges like parameter selection and covariate shift. These advancements are significant for diverse applications, from genome-wide association studies and computational chemistry to meta-analysis and time series forecasting, enabling more accurate and efficient analyses of high-dimensional data.
Papers
February 7, 2022
January 17, 2022
January 13, 2022
December 1, 2021
November 26, 2021
November 22, 2021
November 19, 2021
November 9, 2021
November 6, 2021