Knowledge Distillation
Knowledge distillation is a machine learning technique that transfers knowledge from a large, complex "teacher" model to a smaller, more efficient "student" model, aiming to improve the student's performance and reduce computational costs. Current research focuses on improving distillation methods for various model architectures, including convolutional neural networks, transformers, and large language models, often incorporating techniques like parameter-efficient fine-tuning, multi-task learning, and data augmentation to enhance knowledge transfer. This approach is significant because it enables the deployment of high-performing models on resource-constrained devices and addresses challenges related to model size, training time, and privacy in diverse applications such as image captioning, speech processing, and medical diagnosis.
Papers
Distil-DCCRN: A Small-footprint DCCRN Leveraging Feature-based Knowledge Distillation in Speech Enhancement
Runduo Han, Weiming Xu, Zihan Zhang, Mingshuai Liu, Lei Xie
ComKD-CLIP: Comprehensive Knowledge Distillation for Contrastive Language-Image Pre-traning Model
Yifan Chen, Xiaozhen Qiao, Zhe Sun, Xuelong Li
Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations
Leo Donisch, Sigurd Schacht, Carsten Lanquillon
VizECGNet: Visual ECG Image Network for Cardiovascular Diseases Classification with Multi-Modal Training and Knowledge Distillation
Ju-Hyeon Nam, Seo-Hyung Park, Su Jung Kim, Sang-Chul Lee
Gemma 2: Improving Open Language Models at a Practical Size
Gemma Team: Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vijaykumar, Dominika Rogozińska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Plucińska, Harleen Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao, Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin, Sébastien M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, Alek Andreev et al. (98 additional authors not shown) You must enable JavaScript to view entire author list.
Lifelong Person Search
Jae-Won Yang, Seungbin Hong, Jae-Young Sim
Mixture of Modular Experts: Distilling Knowledge from a Multilingual Teacher into Specialized Modular Language Models
Mohammed Al-Maamari, Mehdi Ben Amor, Michael Granitzer
Overcoming Uncertain Incompleteness for Robust Multimodal Sequential Diagnosis Prediction via Knowledge Distillation and Random Data Erasing
Heejoon Koo
LLAVADI: What Matters For Multimodal Large Language Models Distillation
Shilin Xu, Xiangtai Li, Haobo Yuan, Lu Qi, Yunhai Tong, Ming-Hsuan Yang
Logic Distillation: Learning from Code Function by Function for Planning and Decision-making
Dong Chen, Shilin Zhang, Fei Gao, Yueting Zhuang, Siliang Tang, Qidong Liu, Mingliang Xu
Leveraging Foundation Models via Knowledge Distillation in Multi-Object Tracking: Distilling DINOv2 Features to FairMOT
Niels G. Faber, Seyed Sahand Mohammadi Ziabari, Fatemeh Karimi Nejadasl
How to Train the Teacher Model for Effective Knowledge Distillation
Shayan Mohajer Hamidi, Xizhen Deng, Renhao Tan, Linfeng Ye, Ahmed Hussein Salamah
Peak-Controlled Logits Poisoning Attack in Federated Distillation
Yuhan Tang, Aoxu Zhang, Zhiyuan Wu, Bo Gao, Tian Wen, Yuwei Wang, Sheng Sun
Separating Novel Features for Logical Anomaly Detection: A Straightforward yet Effective Approach
Kangil Lee, Geonuk Kim