Knowledge Graph
Knowledge graphs (KGs) are structured representations of information, aiming to organize data into interconnected entities and relationships to facilitate knowledge discovery and reasoning. Current research heavily focuses on integrating KGs with large language models (LLMs) to enhance question answering, knowledge graph completion, and other knowledge-intensive tasks, often employing retrieval-augmented generation (RAG) and graph neural network architectures. This integration improves the accuracy and efficiency of various applications, ranging from legal article recommendation and medical diagnosis to supporting legislative processes and scholarly research. The resulting advancements have significant implications for diverse fields requiring complex information processing and reasoning.
Papers
LLM-assisted Knowledge Graph Engineering: Experiments with ChatGPT
Lars-Peter Meyer, Claus Stadler, Johannes Frey, Norman Radtke, Kurt Junghanns, Roy Meissner, Gordian Dziwis, Kirill Bulert, Michael Martin
IntelliGraphs: Datasets for Benchmarking Knowledge Graph Generation
Thiviyan Thanapalasingam, Emile van Krieken, Peter Bloem, Paul Groth
An Open-Source Knowledge Graph Ecosystem for the Life Sciences
Tiffany J. Callahan, Ignacio J. Tripodi, Adrianne L. Stefanski, Luca Cappelletti, Sanya B. Taneja, Jordan M. Wyrwa, Elena Casiraghi, Nicolas A. Matentzoglu, Justin Reese, Jonathan C. Silverstein, Charles Tapley Hoyt, Richard D. Boyce, Scott A. Malec, Deepak R. Unni, Marcin P. Joachimiak, Peter N. Robinson, Christopher J. Mungall, Emanuele Cavalleri, Tommaso Fontana, Giorgio Valentini, Marco Mesiti, Lucas A. Gillenwater, Brook Santangelo, Nicole A. Vasilevsky, Robert Hoehndorf, Tellen D. Bennett, Patrick B. Ryan, George Hripcsak, Michael G. Kahn, Michael Bada, William A. Baumgartner, Lawrence E. Hunter
Separate-and-Aggregate: A Transformer-based Patch Refinement Model for Knowledge Graph Completion
Chen Chen, Yufei Wang, Yang Zhang, Quan Z. Sheng, Kwok-Yan Lam
Empowering recommender systems using automatically generated Knowledge Graphs and Reinforcement Learning
Ghanshyam Verma, Shovon Sengupta, Simon Simanta, Huan Chen, Janos A. Perge, Devishree Pillai, John P. McCrae, Paul Buitelaar
Concept2Box: Joint Geometric Embeddings for Learning Two-View Knowledge Graphs
Zijie Huang, Daheng Wang, Binxuan Huang, Chenwei Zhang, Jingbo Shang, Yan Liang, Zhengyang Wang, Xian Li, Christos Faloutsos, Yizhou Sun, Wei Wang
Knowledge Graph for NLG in the context of conversational agents
Hussam Ghanem, Massinissa Atmani, Christophe Cruz
Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction
Salvatore Carta, Alessandro Giuliani, Leonardo Piano, Alessandro Sebastian Podda, Livio Pompianu, Sandro Gabriele Tiddia
CollabKG: A Learnable Human-Machine-Cooperative Information Extraction Toolkit for (Event) Knowledge Graph Construction
Xiang Wei, Yufeng Chen, Ning Cheng, Xingyu Cui, Jinan Xu, Wenjuan Han
Enhancing Dialogue Generation via Dynamic Graph Knowledge Aggregation
Chen Tang, Hongbo Zhang, Tyler Loakman, Chenghua Lin, Frank Guerin
Chatlaw: A Multi-Agent Collaborative Legal Assistant with Knowledge Graph Enhanced Mixture-of-Experts Large Language Model
Jiaxi Cui, Munan Ning, Zongjian Li, Bohua Chen, Yang Yan, Hao Li, Bin Ling, Yonghong Tian, Li Yuan