Large Corpus
Large corpora, massive collections of text and other data, are fundamental to training advanced language models and other AI systems. Current research focuses on improving the efficiency and effectiveness of training with diverse and heterogeneous corpora, including techniques like decoupled embeddings and data augmentation to mitigate issues like the "curse of multilinguality" and domain-specific biases. This work is crucial for advancing natural language processing, enabling the development of more robust, accurate, and versatile AI systems across various languages and domains, with applications ranging from question answering to knowledge graph construction.
Papers
INDUS: Effective and Efficient Language Models for Scientific Applications
Bishwaranjan Bhattacharjee, Aashka Trivedi, Masayasu Muraoka, Muthukumaran Ramasubramanian, Takuma Udagawa, Iksha Gurung, Nishan Pantha, Rong Zhang, Bharath Dandala, Rahul Ramachandran, Manil Maskey, Kaylin Bugbee, Mike Little, Elizabeth Fancher, Irina Gerasimov, Armin Mehrabian, Lauren Sanders, Sylvain Costes, Sergi Blanco-Cuaresma, Kelly Lockhart, Thomas Allen, Felix Grezes, Megan Ansdell, Alberto Accomazzi, Yousef El-Kurdi, Davis Wertheimer, Birgit Pfitzmann, Cesar Berrospi Ramis, Michele Dolfi, Rafael Teixeira de Lima, Panagiotis Vagenas, S. Karthik Mukkavilli, Peter Staar, Sanaz Vahidinia, Ryan McGranaghan, Tsendgar Lee
Dynamic data sampler for cross-language transfer learning in large language models
Yudong Li, Yuhao Feng, Wen Zhou, Zhe Zhao, Linlin Shen, Cheng Hou, Xianxu Hou