Large Corpus
Large corpora, massive collections of text and other data, are fundamental to training advanced language models and other AI systems. Current research focuses on improving the efficiency and effectiveness of training with diverse and heterogeneous corpora, including techniques like decoupled embeddings and data augmentation to mitigate issues like the "curse of multilinguality" and domain-specific biases. This work is crucial for advancing natural language processing, enabling the development of more robust, accurate, and versatile AI systems across various languages and domains, with applications ranging from question answering to knowledge graph construction.
Papers
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, Kyle Lo
RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, Christopher D. Manning