Large Language Model
Large language models (LLMs) are sophisticated AI systems designed to process and generate human-like text, aiming to improve various natural language processing tasks. Current research focuses on enhancing LLM safety, efficiency (through techniques like quantization and optimized decoding), and fairness, as well as improving their ability to perform complex reasoning and handle diverse instructions. These advancements are significant because they address critical limitations in current LLMs and pave the way for broader applications across diverse fields, including healthcare, legal tech, and autonomous systems.
Papers
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
Yoel Zimmermann, Adib Bazgir, Zartashia Afzal, Fariha Agbere, Qianxiang Ai, Nawaf Alampara, Alexander Al-Feghali, Mehrad Ansari, Dmytro Antypov, Amro Aswad, Jiaru Bai, Viktoriia Baibakova, Devi Dutta Biswajeet, Erik Bitzek, Joshua D. Bocarsly, Anna Borisova, Andres M Bran, L. Catherine Brinson, Marcel Moran Calderon, Alessandro Canalicchio, Victor Chen, Yuan Chiang, Defne Circi, Benjamin Charmes, Vikrant Chaudhary, Zizhang Chen, Min-Hsueh Chiu, Judith Clymo, Kedar Dabhadkar, Nathan Daelman, Archit Datar, Wibe A. de Jong, Matthew L. Evans, Maryam Ghazizade Fard, Giuseppe Fisicaro, Abhijeet Sadashiv Gangan, Janine George, Jose D. Cojal Gonzalez, Michael Götte, Ankur K. Gupta, Hassan Harb, Pengyu Hong, Abdelrahman Ibrahim, Ahmed Ilyas, Alishba Imran, Kevin Ishimwe, Ramsey Issa, Kevin Maik Jablonka, Colin Jones, Tyler R. Josephson, Greg Juhasz, Sarthak Kapoor, Rongda Kang, Ghazal Khalighinejad, Sartaaj Khan, Sascha Klawohn, Suneel Kuman, Alvin Noe Ladines, Sarom Leang, Magdalena Lederbauer, Sheng-Lun (Mark) Liao, Hao Liu, Xuefeng Liu, Stanley Lo, Sandeep Madireddy, Piyush Ranjan Maharana, Shagun Maheshwari, Soroush Mahjoubi, José A. Márquez, Rob Mills, Trupti Mohanty, Bernadette Mohr, Seyed Mohamad Moosavi, Alexander Moßhammer, Amirhossein D. Naghdi, Aakash Naik, Oleksandr Narykov, Hampus Näsström, Xuan Vu Nguyen, Xinyi Ni, Dana O'Connor, Teslim Olayiwola, Federico Ottomano, Aleyna Beste Ozhan, Sebastian Pagel, Chiku Parida, Jaehee Park, Vraj Patel, Elena Patyukova, Martin Hoffmann Petersen, Luis Pinto, José M. Pizarro, Dieter Plessers, Tapashree Pradhan, Utkarsh Pratiush, Charishma Puli, Andrew Qin, Mahyar Rajabi, Francesco Ricci, Elliot Risch, Martiño Ríos-García, Aritra Roy, Tehseen Rug, Hasan M Sayeed, Markus Scheidgen, Mara Schilling-Wilhelmi, Marcel Schloz, Fabian Schöppach, Julia Schumann, Philippe Schwaller, Marcus Schwarting, Samiha Sharlin, Kevin Shen, Jiale Shi, Pradip Si, Jennifer D'Souza, Taylor Sparks, Suraj Sudhakar, Leopold Talirz, Dandan Tang, Olga Taran, Carla Terboven, Mark Tropin, Anastasiia Tsymbal, Katharina Ueltzen, Pablo Andres Unzueta, Archit Vasan, Tirtha Vinchurkar, Trung Vo, Gabriel Vogel, Christoph Völker, Jan Weinreich, Faradawn Yang, Mohd Zaki, Chi Zhang, Sylvester Zhang, Weijie Zhang, Ruijie Zhu, Shang Zhu, Jan Janssen, Calvin Li, Ian Foster, Ben Blaiszik et al. (96 additional authors not shown) You must enabled JavaScript to view entire author list.
Assessing Gender Bias in LLMs: Comparing LLM Outputs with Human Perceptions and Official Statistics
Tetiana Bas
Utilizing Large Language Models to Synthesize Product Desirability Datasets
John D. Hastings, Sherri Weitl-Harms, Joseph Doty, Zachary L. Myers, Warren Thompson
S$^2$ALM: Sequence-Structure Pre-trained Large Language Model for Comprehensive Antibody Representation Learning
Mingze Yin, Hanjing Zhou, Jialu Wu, Yiheng Zhu, Yuxuan Zhan, Zitai Kong, Hongxia Xu, Chang-Yu Hsieh, Jintai Chen, Tingjun Hou, Jian Wu
CryptoFormalEval: Integrating LLMs and Formal Verification for Automated Cryptographic Protocol Vulnerability Detection
Cristian Curaba, Denis D'Ambrosi, Alessandro Minisini, Natalia Pérez-Campanero Antolín
A Survey on Human-Centric LLMs
Jing Yi Wang, Nicholas Sukiennik, Tong Li, Weikang Su, Qianyue Hao, Jingbo Xu, Zihan Huang, Fengli Xu, Yong Li
FASTNav: Fine-tuned Adaptive Small-language-models Trained for Multi-point Robot Navigation
Yuxuan Chen, Yixin Han, Xiao Li
AIDBench: A benchmark for evaluating the authorship identification capability of large language models
Zichen Wen, Dadi Guo, Huishuai Zhang
Existential Conversations with Large Language Models: Content, Community, and Culture
Murray Shanahan, Beth Singler
The Information Security Awareness of Large Language Models
Ofir Cohen, Gil Ari Agmon, Asaf Shabtai, Rami Puzis
Closer Look at Efficient Inference Methods: A Survey of Speculative Decoding
Hyun Ryu, Eric Kim
DMQR-RAG: Diverse Multi-Query Rewriting for RAG
Zhicong Li, Jiahao Wang, Zhishu Jiang, Hangyu Mao, Zhongxia Chen, Jiazhen Du, Yuanxing Zhang, Fuzheng Zhang, Di Zhang, Yong Liu
Patience Is The Key to Large Language Model Reasoning
Yijiong Yu
Hardware Scaling Trends and Diminishing Returns in Large-Scale Distributed Training
Jared Fernandez, Luca Wehrstedt, Leonid Shamis, Mostafa Elhoushi, Kalyan Saladi, Yonatan Bisk, Emma Strubell, Jacob Kahn
The Impossible Test: A 2024 Unsolvable Dataset and A Chance for an AGI Quiz
David Noever, Forrest McKee
LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
Zhuohan Gu, Jiayi Yao, Kuntai Du, Junchen Jiang
MERLOT: A Distilled LLM-based Mixture-of-Experts Framework for Scalable Encrypted Traffic Classification
Yuxuan Chen, Rongpeng Li, Zhifeng Zhao, Honggang Zhang
MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers
Ning Ding, Yehui Tang, Haochen Qin, Zhenli Zhou, Chao Xu, Lin Li, Kai Han, Heng Liao, Yunhe Wang
Training Bilingual LMs with Data Constraints in the Targeted Language
Skyler Seto, Maartje ter Hoeve, He Bai, Natalie Schluter, David Grangier
Robust Planning with Compound LLM Architectures: An LLM-Modulo Approach
Atharva Gundawar, Karthik Valmeekam, Mudit Verma, Subbarao Kambhampati