Large Scale
Large-scale data processing and analysis are central to addressing numerous scientific and engineering challenges, focusing on efficient handling of massive datasets and complex systems. Current research emphasizes developing novel algorithms and model architectures, such as graph neural networks, deep learning models, and physics-guided machine learning, to improve efficiency, accuracy, and scalability in diverse applications. These advancements are crucial for tackling problems ranging from traffic optimization and robot navigation to astronomical surveys and the development of more energy-efficient AI systems. The resulting insights and tools have significant implications across various fields, enabling more effective data-driven decision-making and scientific discovery.
Papers
Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale
Federico Bianchi, Pratyusha Kalluri, Esin Durmus, Faisal Ladhak, Myra Cheng, Debora Nozza, Tatsunori Hashimoto, Dan Jurafsky, James Zou, Aylin Caliskan
Monte Carlo Techniques for Addressing Large Errors and Missing Data in Simulation-based Inference
Bingjie Wang, Joel Leja, Ashley Villar, Joshua S. Speagle
Efficient Graph Neural Network Inference at Large Scale
Xinyi Gao, Wentao Zhang, Yingxia Shao, Quoc Viet Hung Nguyen, Bin Cui, Hongzhi Yin
Galaxy classification: a deep learning approach for classifying Sloan Digital Sky Survey images
Sarvesh Gharat, Yogesh Dandawate
Technology Pipeline for Large Scale Cross-Lingual Dubbing of Lecture Videos into Multiple Indian Languages
Anusha Prakash, Arun Kumar, Ashish Seth, Bhagyashree Mukherjee, Ishika Gupta, Jom Kuriakose, Jordan Fernandes, K V Vikram, Mano Ranjith Kumar M, Metilda Sagaya Mary, Mohammad Wajahat, Mohana N, Mudit Batra, Navina K, Nihal John George, Nithya Ravi, Pruthwik Mishra, Sudhanshu Srivastava, Vasista Sai Lodagala, Vandan Mujadia, Kada Sai Venkata Vineeth, Vrunda Sukhadia, Dipti Sharma, Hema Murthy, Pushpak Bhattacharya, S Umesh, Rajeev Sangal
Transfer Learning with Kernel Methods
Adityanarayanan Radhakrishnan, Max Ruiz Luyten, Neha Prasad, Caroline Uhler
Learning shape distributions from large databases of healthy organs: applications to zero-shot and few-shot abnormal pancreas detection
Rebeca Vétil, Clément Abi Nader, Alexandre Bône, Marie-Pierre Vullierme, Marc-Michel Roheé, Pietro Gori, Isabelle Bloch
Navigating the challenges in creating complex data systems: a development philosophy
Sören Dittmer, Michael Roberts, Julian Gilbey, Ander Biguri, AIX-COVNET Collaboration, Jacobus Preller, James H. F. Rudd, John A. D. Aston, Carola-Bibiane Schönlieb
A Survey of Dataset Refinement for Problems in Computer Vision Datasets
Zhijing Wan, Zhixiang Wang, CheukTing Chung, Zheng Wang
Reversed Image Signal Processing and RAW Reconstruction. AIM 2022 Challenge Report
Marcos V. Conde, Radu Timofte, Yibin Huang, Jingyang Peng, Chang Chen, Cheng Li, Eduardo Pérez-Pellitero, Fenglong Song, Furui Bai, Shuai Liu, Chaoyu Feng, Xiaotao Wang, Lei Lei, Yu Zhu, Chenghua Li, Yingying Jiang, Yong A, Peisong Wang, Cong Leng, Jian Cheng, Xiaoyu Liu, Zhicun Yin, Zhilu Zhang, Junyi Li, Ming Liu, Wangmeng Zuo, Jun Jiang, Jinha Kim, Yue Zhang, Beiji Zou, Zhikai Zong, Xiaoxiao Liu, Juan Marín Vega, Michael Sloth, Peter Schneider-Kamp, Richard Röttger, Furkan Kınlı, Barış Özcan, Furkan Kıraç, Li Leyi, SM Nadim Uddin, Dipon Kumar Ghosh, Yong Ju Jung
Large-batch Optimization for Dense Visual Predictions
Zeyue Xue, Jianming Liang, Guanglu Song, Zhuofan Zong, Liang Chen, Yu Liu, Ping Luo