LeArning Abstract

Learning, in the context of these papers, encompasses a broad range of research focused on improving the efficiency, robustness, and adaptability of machine learning models across diverse applications. Current efforts concentrate on developing novel self-supervised learning techniques, particularly for structured data like tabular formats, and on leveraging low-rank adaptations for efficient fine-tuning of large language and other foundation models. These advancements are significant because they address key challenges in data efficiency, computational cost, and the generalization capabilities of machine learning systems, impacting fields ranging from personalized medicine to autonomous robotics.

Papers

December 23, 2024