LiDAR Point Cloud
LiDAR point clouds are collections of 3D points representing a scene, crucial for autonomous systems needing precise environmental understanding. Current research emphasizes efficient processing of these large datasets, focusing on learned feature extraction to reduce computational load and improve accuracy in tasks like simultaneous localization and mapping (SLAM), place recognition, and object detection. This involves developing novel neural network architectures, such as transformers and graph convolutional networks, often combined with multimodal fusion (e.g., integrating LiDAR with camera data) to enhance robustness and accuracy. The resulting advancements have significant implications for autonomous driving, robotics, and 3D mapping applications.
Papers
3D Object Detection in LiDAR Point Clouds using Graph Neural Networks
Shreelakshmi C R, Surya S. Durbha, Gaganpreet Singh
LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D Object Detection
Jin Fang, Dingfu Zhou, Jingjing Zhao, Chenming Wu, Chulin Tang, Cheng-Zhong Xu, Liangjun Zhang