LLM Inference
LLM inference focuses on efficiently executing large language models to generate text or perform other tasks, aiming to minimize latency and resource consumption while maintaining accuracy. Current research emphasizes optimizing inference across diverse hardware platforms (CPUs, GPUs, NPUs, specialized ASICs), employing techniques like model quantization, knowledge distillation, and innovative decoding methods (e.g., speculative decoding, beam search). These advancements are crucial for deploying LLMs in resource-constrained environments and enabling real-time applications, impacting both the scalability of LLM research and the development of practical, cost-effective AI systems.
Papers
Vidur: A Large-Scale Simulation Framework For LLM Inference
Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish Panwar, Nipun Kwatra, Bhargav Gulavani, Ramachandran Ramjee, Alexey Tumanov
KV-Runahead: Scalable Causal LLM Inference by Parallel Key-Value Cache Generation
Minsik Cho, Mohammad Rastegari, Devang Naik
DALK: Dynamic Co-Augmentation of LLMs and KG to answer Alzheimer's Disease Questions with Scientific Literature
Dawei Li, Shu Yang, Zhen Tan, Jae Young Baik, Sukwon Yun, Joseph Lee, Aaron Chacko, Bojian Hou, Duy Duong-Tran, Ying Ding, Huan Liu, Li Shen, Tianlong Chen