Machine Learning
Machine learning (ML) focuses on developing algorithms that allow computers to learn from data without explicit programming, aiming to improve prediction accuracy, automate tasks, and extract insights. Current research emphasizes areas like fairness in federated learning, efficient model training and deployment (including techniques to reduce communication overhead), and enhancing model interpretability and robustness against adversarial attacks. ML's impact spans diverse fields, from healthcare (e.g., disease prediction) and industrial quality control to astrophysics (e.g., galaxy classification) and cybersecurity, demonstrating its broad applicability and significant potential for scientific advancement and practical problem-solving.
Papers
Efficient Network Traffic Feature Sets for IoT Intrusion Detection
Miguel Silva, João Vitorino, Eva Maia, Isabel Praça
A Comprehensive Survey on Machine Learning Driven Material Defect Detection: Challenges, Solutions, and Future Prospects
Jun Bai, Di Wu, Tristan Shelley, Peter Schubel, David Twine, John Russell, Xuesen Zeng, Ji Zhang
An insertable glucose sensor using a compact and cost-effective phosphorescence lifetime imager and machine learning
Artem Goncharov, Zoltan Gorocs, Ridhi Pradhan, Brian Ko, Ajmal Ajmal, Andres Rodriguez, David Baum, Marcell Veszpremi, Xilin Yang, Maxime Pindrys, Tianle Zheng, Oliver Wang, Jessica C. Ramella-Roman, Michael J. McShane, Aydogan Ozcan
ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability
Yanming Guo, Charles Guan, Jin Ma
Meent: Differentiable Electromagnetic Simulator for Machine Learning
Yongha Kim, Anthony W. Jung, Sanmun Kim, Kevin Octavian, Doyoung Heo, Chaejin Park, Jeongmin Shin, Sunghyun Nam, Chanhyung Park, Juho Park, Sangjun Han, Jinmyoung Lee, Seolho Kim, Min Seok Jang, Chan Y. Park
Beyond the Norms: Detecting Prediction Errors in Regression Models
Andres Altieri, Marco Romanelli, Georg Pichler, Florence Alberge, Pablo Piantanida
Evaluating Zero-Shot Long-Context LLM Compression
Chenyu Wang, Yihan Wang
Long-Term Fairness Inquiries and Pursuits in Machine Learning: A Survey of Notions, Methods, and Challenges
Usman Gohar, Zeyu Tang, Jialu Wang, Kun Zhang, Peter L. Spirtes, Yang Liu, Lu Cheng
Federated learning in food research
Zuzanna Fendor, Bas H. M. van der Velden, Xinxin Wang, Andrea Jr. Carnoli, Osman Mutlu, Ali Hürriyetoğlu
Beyond Trend Following: Deep Learning for Market Trend Prediction
Fernando Berzal, Alberto Garcia
EpiLearn: A Python Library for Machine Learning in Epidemic Modeling
Zewen Liu, Yunxiao Li, Mingyang Wei, Guancheng Wan, Max S.Y. Lau, Wei Jin
Event prediction and causality inference despite incomplete information
Harrison Lam, Yuanjie Chen, Noboru Kanazawa, Mohammad Chowdhury, Anna Battista, Stephan Waldert
Interpretable machine learning approach for electron antineutrino selection in a large liquid scintillator detector
A. Gavrikov, V. Cerrone, A. Serafini, R. Brugnera, A. Garfagnini, M. Grassi, B. Jelmini, L. Lastrucci, S. Aiello, G. Andronico, V. Antonelli, A. Barresi, D. Basilico, M. Beretta, A. Bergnoli, M. Borghesi, A. Brigatti, R. Bruno, A. Budano, B. Caccianiga, A. Cammi, R. Caruso, D. Chiesa, C. Clementi, S. Dusini, A. Fabbri, G. Felici, F. Ferraro, M. G. Giammarchi, N. Giudice, R. M. Guizzetti, N. Guardone, C. Landini, I. Lippi, S. Loffredo, L. Loi, P. Lombardi, C. Lombardo, F. Mantovani, S. M. Mari, A. Martini, L. Miramonti, M. Montuschi, M. Nastasi, D. Orestano, F. Ortica, A. Paoloni, E. Percalli, F. Petrucci, E. Previtali, G. Ranucci, A. C. Re, M. Redchuck, B. Ricci, A. Romani, P. Saggese, G. Sava, C. Sirignano, M. Sisti, L. Stanco, E. Stanescu Farilla, V. Strati, M. D. C. Torri, A. Triossi, C. Tuvé, C. Venettacci, G. Verde, L. Votano et al. (4 additional authors not shown) You must enabled JavaScript to view entire author list.
What Can We Learn from State Space Models for Machine Learning on Graphs?
Yinan Huang, Siqi Miao, Pan Li
General Distribution Learning: A theoretical framework for Deep Learning
Binchuan Qi
Improving Model Chain Approaches for Probabilistic Solar Energy Forecasting through Post-processing and Machine Learning
Nina Horat, Sina Klerings, Sebastian Lerch
Verbalized Machine Learning: Revisiting Machine Learning with Language Models
Tim Z. Xiao, Robert Bamler, Bernhard Schölkopf, Weiyang Liu
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology
Julius Hense, Mina Jamshidi Idaji, Oliver Eberle, Thomas Schnake, Jonas Dippel, Laure Ciernik, Oliver Buchstab, Andreas Mock, Frederick Klauschen, Klaus-Robert Müller