Medical Image Segmentation
Medical image segmentation aims to automatically delineate specific anatomical structures or regions of interest within medical images, facilitating accurate diagnosis and treatment planning. Current research heavily focuses on improving segmentation accuracy and efficiency using advanced architectures like U-Net and its variants, Vision Transformers, and Large Language Models, often incorporating techniques such as multi-scale feature extraction, attention mechanisms, and test-time training. These advancements are crucial for improving diagnostic capabilities, accelerating clinical workflows, and enabling more precise and personalized medicine. Furthermore, research is actively addressing challenges like limited annotated data through semi-supervised learning and the use of foundation models for improved generalization across different imaging modalities and clinical settings.
Papers
Leveraging Global Binary Masks for Structure Segmentation in Medical Images
Mahdieh Kazemimoghadam, Zi Yang, Lin Ma, Mingli Chen, Weiguo Lu, Xuejun Gu
Contrastive Domain Disentanglement for Generalizable Medical Image Segmentation
Ran Gu, Jiangshan Lu, Jingyang Zhang, Wenhui Lei, Xiaofan Zhang, Guotai Wang, Shaoting Zhang
Federated Cross Learning for Medical Image Segmentation
Xuanang Xu, Hannah H. Deng, Tianyi Chen, Tianshu Kuang, Joshua C. Barber, Daeseung Kim, Jaime Gateno, James J. Xia, Pingkun Yan
A Dempster-Shafer approach to trustworthy AI with application to fetal brain MRI segmentation
Lucas Fidon, Michael Aertsen, Florian Kofler, Andrea Bink, Anna L. David, Thomas Deprest, Doaa Emam, Frédéric Guffens, András Jakab, Gregor Kasprian, Patric Kienast, Andrew Melbourne, Bjoern Menze, Nada Mufti, Ivana Pogledic, Daniela Prayer, Marlene Stuempflen, Esther Van Elslander, Sébastien Ourselin, Jan Deprest, Tom Vercauteren