Medical Image Segmentation
Medical image segmentation aims to automatically delineate specific anatomical structures or regions of interest within medical images, facilitating accurate diagnosis and treatment planning. Current research heavily focuses on improving segmentation accuracy and efficiency using advanced architectures like U-Net and its variants, Vision Transformers, and Large Language Models, often incorporating techniques such as multi-scale feature extraction, attention mechanisms, and test-time training. These advancements are crucial for improving diagnostic capabilities, accelerating clinical workflows, and enabling more precise and personalized medicine. Furthermore, research is actively addressing challenges like limited annotated data through semi-supervised learning and the use of foundation models for improved generalization across different imaging modalities and clinical settings.
Papers
Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis
Nicolás Gaggion, Lucas Mansilla, Candelaria Mosquera, Diego H. Milone, Enzo Ferrante
TransFusion: Multi-view Divergent Fusion for Medical Image Segmentation with Transformers
Di Liu, Yunhe Gao, Qilong Zhangli, Ligong Han, Xiaoxiao He, Zhaoyang Xia, Song Wen, Qi Chang, Zhennan Yan, Mu Zhou, Dimitris Metaxas