Medical Imaging
Medical imaging research focuses on developing and improving AI-powered methods for analyzing medical images, primarily aiming to enhance diagnostic accuracy, efficiency, and accessibility. Current research emphasizes robust model architectures (like Vision Transformers and UNets) and algorithms (including federated learning, generative adversarial networks, and diffusion models) to address challenges such as data scarcity, domain shifts (e.g., scanner variations), and privacy concerns. These advancements hold significant potential for improving clinical decision-making, particularly in areas with limited radiologist access, and for facilitating more efficient and reliable medical diagnoses.
Papers
Evaluating Generative AI-Enhanced Content: A Conceptual Framework Using Qualitative, Quantitative, and Mixed-Methods Approaches
Saman Sarraf
HOPPR Medical-Grade Platform for Medical Imaging AI
Kalina P. Slavkova, Melanie Traughber, Oliver Chen, Robert Bakos, Shayna Goldstein, Dan Harms, Bradley J. Erickson, Khan M. Siddiqui