Medical Imaging
Medical imaging research focuses on developing and improving AI-powered methods for analyzing medical images, primarily aiming to enhance diagnostic accuracy, efficiency, and accessibility. Current research emphasizes robust model architectures (like Vision Transformers and UNets) and algorithms (including federated learning, generative adversarial networks, and diffusion models) to address challenges such as data scarcity, domain shifts (e.g., scanner variations), and privacy concerns. These advancements hold significant potential for improving clinical decision-making, particularly in areas with limited radiologist access, and for facilitating more efficient and reliable medical diagnoses.
Papers
CheXstray: Real-time Multi-Modal Data Concordance for Drift Detection in Medical Imaging AI
Arjun Soin, Jameson Merkow, Jin Long, Joseph Paul Cohen, Smitha Saligrama, Stephen Kaiser, Steven Borg, Ivan Tarapov, Matthew P Lungren
Hyper-Convolutions via Implicit Kernels for Medical Imaging
Tianyu Ma, Alan Q. Wang, Adrian V. Dalca, Mert R. Sabuncu