Medical Imaging
Medical imaging research focuses on developing and improving AI-powered methods for analyzing medical images, primarily aiming to enhance diagnostic accuracy, efficiency, and accessibility. Current research emphasizes robust model architectures (like Vision Transformers and UNets) and algorithms (including federated learning, generative adversarial networks, and diffusion models) to address challenges such as data scarcity, domain shifts (e.g., scanner variations), and privacy concerns. These advancements hold significant potential for improving clinical decision-making, particularly in areas with limited radiologist access, and for facilitating more efficient and reliable medical diagnoses.
Papers
CLIP in Medical Imaging: A Comprehensive Survey
Zihao Zhao, Yuxiao Liu, Han Wu, Yonghao Li, Sheng Wang, Lin Teng, Disheng Liu, Zhiming Cui, Qian Wang, Dinggang Shen
On the notion of Hallucinations from the lens of Bias and Validity in Synthetic CXR Images
Gauri Bhardwaj, Yuvaraj Govindarajulu, Sundaraparipurnan Narayanan, Pavan Kulkarni, Manojkumar Parmar
Deep Interactive Segmentation of Medical Images: A Systematic Review and Taxonomy
Zdravko Marinov, Paul F. Jäger, Jan Egger, Jens Kleesiek, Rainer Stiefelhagen
3D-MIR: A Benchmark and Empirical Study on 3D Medical Image Retrieval in Radiology
Asma Ben Abacha, Alberto Santamaria-Pang, Ho Hin Lee, Jameson Merkow, Qin Cai, Surya Teja Devarakonda, Abdullah Islam, Julia Gong, Matthew P. Lungren, Thomas Lin, Noel C Codella, Ivan Tarapov