Model Performance
Model performance research focuses on improving the accuracy, efficiency, and robustness of machine learning models across diverse applications. Current efforts concentrate on optimizing ensemble methods, particularly for large language models (LLMs), and addressing challenges like model drift and the impact of data quality and quantity on performance, often employing techniques like network deconvolution, adaptive sampling, and low-rank adaptation. These advancements are crucial for deploying reliable AI systems in various fields, from healthcare diagnostics to resource-constrained IoT devices, and for establishing robust evaluation methodologies to ensure trustworthy AI.
Papers
February 28, 2022
February 24, 2022
January 25, 2022
January 7, 2022
December 23, 2021
December 20, 2021