Model Training
Model training focuses on developing efficient and effective methods for creating accurate and robust machine learning models. Current research emphasizes improving training efficiency through techniques like low-precision computation, optimized memory management (e.g., using recomputation and memory-aware scheduling), and efficient communication strategies in distributed and federated learning settings. These advancements are crucial for scaling model training to larger datasets and more complex architectures, impacting various fields from computer vision and natural language processing to healthcare and industrial applications.
Papers
On the Effect of (Near) Duplicate Subwords in Language Modelling
Anton Schäfer, Thomas Hofmann, Imanol Schlag, Tiago Pimentel
[Call for Papers] The 2nd BabyLM Challenge: Sample-efficient pretraining on a developmentally plausible corpus
Leshem Choshen, Ryan Cotterell, Michael Y. Hu, Tal Linzen, Aaron Mueller, Candace Ross, Alex Warstadt, Ethan Wilcox, Adina Williams, Chengxu Zhuang
FLEX: FLEXible Federated Learning Framework
Francisco Herrera, Daniel Jiménez-López, Alberto Argente-Garrido, Nuria Rodríguez-Barroso, Cristina Zuheros, Ignacio Aguilera-Martos, Beatriz Bello, Mario García-Márquez, M. Victoria Luzón