Multi Agent Deep Reinforcement Learning
Multi-agent deep reinforcement learning (MADRL) focuses on training multiple AI agents to collaborate or compete within a shared environment, aiming to optimize collective performance through learning. Current research emphasizes developing efficient algorithms like MADDPG and variations of Q-learning, often incorporating transformer networks for improved feature representation and handling complex interactions, and exploring different training paradigms such as centralized training with decentralized execution. This field is significant for its potential to solve complex real-world problems across diverse domains, including autonomous driving, robotics, network optimization, and resource management, by enabling more robust and adaptable systems.
Papers
Episodic Multi-agent Reinforcement Learning with Curiosity-Driven Exploration
Lulu Zheng, Jiarui Chen, Jianhao Wang, Jiamin He, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang Gao, Chongjie Zhang
Multi-agent Bayesian Deep Reinforcement Learning for Microgrid Energy Management under Communication Failures
Hao Zhou, Atakan Aral, Ivona Brandic, Melike Erol-Kantarci