Multi Agent
Multi-agent systems research focuses on designing and analyzing systems composed of multiple interacting agents, aiming to achieve complex goals through collaboration or competition. Current research emphasizes leveraging large language models (LLMs) to enhance agent capabilities, particularly in reasoning, planning, and communication, often employing architectures like multi-agent reinforcement learning (MARL) and novel communication pipelines to improve efficiency and robustness. This field is significant for advancing AI capabilities in diverse applications, including robotics, autonomous driving, and scientific discovery, by enabling more sophisticated and adaptable intelligent systems.
Papers
Factored Online Planning in Many-Agent POMDPs
Maris F. L. Galesloot, Thiago D. Simão, Sebastian Junges, Nils Jansen
MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL
Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang, Di Yin, Xing Sun, Zhoujun Li