Multi Head
Multi-head architectures, featuring multiple parallel processing pathways within a single neural network, are a burgeoning area of research aiming to improve efficiency, accuracy, and robustness in various machine learning tasks. Current research focuses on optimizing multi-head attention mechanisms in transformers, developing efficient multi-head models for diverse applications like speech recognition, image processing, and time series analysis, and exploring their use in continual learning and multi-task learning scenarios. These advancements hold significant potential for improving the performance and scalability of AI systems across numerous fields, from healthcare and environmental monitoring to natural language processing and computer vision.
Papers
Multi-lingual agents through multi-headed neural networks
J. D. Thomas, R. Santos-Rodríguez, R. Piechocki, M. Anca
Many Heads but One Brain: Fusion Brain -- a Competition and a Single Multimodal Multitask Architecture
Daria Bakshandaeva, Denis Dimitrov, Vladimir Arkhipkin, Alex Shonenkov, Mark Potanin, Denis Karachev, Andrey Kuznetsov, Anton Voronov, Vera Davydova, Elena Tutubalina, Aleksandr Petiushko