Multi Modality
Multimodality in machine learning focuses on integrating information from diverse data sources (e.g., text, images, audio, sensor data) to improve model performance and robustness. Current research emphasizes developing effective fusion strategies within various model architectures, including transformers and autoencoders, often employing contrastive learning and techniques to handle missing modalities. This approach is proving valuable across numerous applications, from medical diagnosis and e-commerce to assistive robotics and urban planning, by enabling more comprehensive and accurate analyses than unimodal methods.
Papers
Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI
Zhiyuan Li, Tianyuan Yao, Praitayini Kanakaraj, Chenyu Gao, Shunxing Bao, Lianrui Zuo, Michael E. Kim, Nancy R. Newlin, Gaurav Rudravaram, Nazirah M. Khairi, Yuankai Huo, Kurt G. Schilling, Walter A. Kukull, Arthur W. Toga, Derek B. Archer, Timothy J. Hohman, Bennett A. Landman
Towards Child-Inclusive Clinical Video Understanding for Autism Spectrum Disorder
Aditya Kommineni, Digbalay Bose, Tiantian Feng, So Hyun Kim, Helen Tager-Flusberg, Somer Bishop, Catherine Lord, Sudarsana Kadiri, Shrikanth Narayanan