Multi Objective
Multi-objective optimization tackles problems with multiple, often conflicting, objectives, aiming to find optimal trade-offs rather than a single best solution. Current research focuses on developing efficient algorithms, such as evolutionary algorithms (e.g., NSGA-II, MOEA/D), multi-objective reinforcement learning techniques, and novel architectures like transformer networks, to address this challenge across diverse applications. These advancements are improving the design of neural networks, recommender systems, and robotic control systems, among other areas, by enabling the simultaneous optimization of various performance metrics and constraints. The resulting Pareto-optimal solutions offer valuable insights and flexibility for decision-making in complex systems.
Papers
Improving performance in multi-objective decision-making in Bottles environments with soft maximin approaches
Benjamin J Smith, Robert Klassert, Roland Pihlakas
Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment
Zhichao Lu, Ran Cheng, Yaochu Jin, Kay Chen Tan, Kalyanmoy Deb
Towards KAB2S: Learning Key Knowledge from Single-Objective Problems to Multi-Objective Problem
Xu Wendi, Wang Xianpeng, Guo Qingxin, Song Xiangman, Zhao Ren, Zhao Guodong, Yang Yang, Xu Te, He Dakuo
ETO Meets Scheduling: Learning Key Knowledge from Single-Objective Problems to Multi-Objective Problem
Wendi Xu, Xianpeng Wang