Multi Organ Segmentation
Multi-organ segmentation in medical images aims to automatically identify and delineate multiple organs within a single scan, improving diagnostic accuracy and treatment planning. Current research heavily focuses on developing robust deep learning models, employing architectures like U-Nets, Transformers, and hybrid CNN-Transformer approaches, often incorporating attention mechanisms and self-supervised learning to address challenges like data scarcity and class imbalance. These advancements are crucial for improving the efficiency and accuracy of medical image analysis, ultimately leading to better patient care and accelerating medical research.
Papers
An Empirical Study on the Fairness of Foundation Models for Multi-Organ Image Segmentation
Qin Li, Yizhe Zhang, Yan Li, Jun Lyu, Meng Liu, Longyu Sun, Mengting Sun, Qirong Li, Wenyue Mao, Xinran Wu, Yajing Zhang, Yinghua Chu, Shuo Wang, Chengyan Wang
Enhancing Single-Slice Segmentation with 3D-to-2D Unpaired Scan Distillation
Xin Yu, Qi Yang, Han Liu, Ho Hin Lee, Yucheng Tang, Lucas W. Remedios, Michael E. Kim, Rendong Zhang, Shunxing Bao, Yuankai Huo, Ann Zenobia Moore, Luigi Ferrucci, Bennett A. Landman