Multilingual Large Language Model
Multilingual large language models (MLLMs) aim to extend the capabilities of large language models to multiple languages, improving cross-lingual understanding and generation. Current research focuses on enhancing performance for low-resource languages through techniques like continued pre-training on massive multilingual datasets, parameter-efficient fine-tuning with knowledge graphs, and mitigating biases and improving factual accuracy across languages. These advancements are significant for bridging the language gap in AI applications, fostering inclusivity, and enabling more equitable access to advanced language technologies globally.
Papers
NusaWrites: Constructing High-Quality Corpora for Underrepresented and Extremely Low-Resource Languages
Samuel Cahyawijaya, Holy Lovenia, Fajri Koto, Dea Adhista, Emmanuel Dave, Sarah Oktavianti, Salsabil Maulana Akbar, Jhonson Lee, Nuur Shadieq, Tjeng Wawan Cenggoro, Hanung Wahyuning Linuwih, Bryan Wilie, Galih Pradipta Muridan, Genta Indra Winata, David Moeljadi, Alham Fikri Aji, Ayu Purwarianti, Pascale Fung
Baichuan 2: Open Large-scale Language Models
Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong Yan, Fan Yang, Fei Deng, Feng Wang, Feng Liu, Guangwei Ai, Guosheng Dong, Haizhou Zhao, Hang Xu, Haoze Sun, Hongda Zhang, Hui Liu, Jiaming Ji, Jian Xie, JunTao Dai, Kun Fang, Lei Su, Liang Song, Lifeng Liu, Liyun Ru, Luyao Ma, Mang Wang, Mickel Liu, MingAn Lin, Nuolan Nie, Peidong Guo, Ruiyang Sun, Tao Zhang, Tianpeng Li, Tianyu Li, Wei Cheng, Weipeng Chen, Xiangrong Zeng, Xiaochuan Wang, Xiaoxi Chen, Xin Men, Xin Yu, Xuehai Pan, Yanjun Shen, Yiding Wang, Yiyu Li, Youxin Jiang, Yuchen Gao, Yupeng Zhang, Zenan Zhou, Zhiying Wu