Multimodal Data
Multimodal data analysis focuses on integrating information from diverse sources like text, images, audio, and sensor data to achieve a more comprehensive understanding than any single modality allows. Current research emphasizes developing effective fusion techniques, often employing transformer-based architectures, variational autoencoders, or large language models to combine and interpret these heterogeneous data types for tasks ranging from sentiment analysis and medical image interpretation to financial forecasting and summarization. This field is significant because it enables more robust and accurate models across numerous applications, improving decision-making in areas like healthcare, finance, and environmental monitoring.
Papers
MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder
Lei Li, Tianfang Zhang, Xinglin Zhang, Jiaqi Liu, Bingqi Ma, Yan Luo, Tao Chen
CLIP the Bias: How Useful is Balancing Data in Multimodal Learning?
Ibrahim Alabdulmohsin, Xiao Wang, Andreas Steiner, Priya Goyal, Alexander D'Amour, Xiaohua Zhai