Multimodal Dataset
Multimodal datasets integrate data from diverse sources, such as text, images, audio, and sensor readings, to improve the performance of machine learning models on complex tasks. Current research focuses on developing and applying these datasets across various domains, including remote sensing, healthcare, and robotics, often employing transformer-based architectures and contrastive learning methods to effectively fuse information from different modalities. The availability of high-quality multimodal datasets is crucial for advancing research in artificial intelligence and enabling the development of more robust and accurate systems for a wide range of applications.
Papers
April 27, 2022
April 7, 2022
April 3, 2022
February 27, 2022
February 25, 2022
February 7, 2022
December 16, 2021
December 10, 2021
December 7, 2021
November 30, 2021