Multimodal Large Language Model
Multimodal large language models (MLLMs) integrate multiple data modalities, such as text, images, and audio, to enhance understanding and reasoning capabilities beyond those of unimodal models. Current research emphasizes improving MLLM performance through refined architectures (e.g., incorporating visual grounding, chain-of-thought prompting), mitigating biases and hallucinations, and developing robust evaluation benchmarks that assess various aspects of multimodal understanding, including active perception and complex reasoning tasks. This work is significant because it pushes the boundaries of AI capabilities, leading to advancements in diverse applications like medical diagnosis, financial analysis, and robotic manipulation.
Papers
Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding
Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng, Yingfang Zhang, Xingchao Liu, Minbin Huang, Zedong Xiao, Dayou Chen, Jiajun He, Jiahao Li, Wenyue Li, Chen Zhang, Rongwei Quan, Jianxiang Lu, Jiabin Huang, Xiaoyan Yuan, Xiaoxiao Zheng, Yixuan Li, Jihong Zhang, Chao Zhang, Meng Chen, Jie Liu, Zheng Fang, Weiyan Wang, Jinbao Xue, Yangyu Tao, Jianchen Zhu, Kai Liu, Sihuan Lin, Yifu Sun, Yun Li, Dongdong Wang, Mingtao Chen, Zhichao Hu, Xiao Xiao, Yan Chen, Yuhong Liu, Wei Liu, Di Wang, Yong Yang, Jie Jiang, Qinglin Lu
A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine
Hanguang Xiao, Feizhong Zhou, Xingyue Liu, Tianqi Liu, Zhipeng Li, Xin Liu, Xiaoxuan Huang
SpeechGuard: Exploring the Adversarial Robustness of Multimodal Large Language Models
Raghuveer Peri, Sai Muralidhar Jayanthi, Srikanth Ronanki, Anshu Bhatia, Karel Mundnich, Saket Dingliwal, Nilaksh Das, Zejiang Hou, Goeric Huybrechts, Srikanth Vishnubhotla, Daniel Garcia-Romero, Sundararajan Srinivasan, Kyu J Han, Katrin Kirchhoff
Probing Multimodal LLMs as World Models for Driving
Shiva Sreeram, Tsun-Hsuan Wang, Alaa Maalouf, Guy Rosman, Sertac Karaman, Daniela Rus
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts
Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey Shi, Longyin Wen
Boosting Multimodal Large Language Models with Visual Tokens Withdrawal for Rapid Inference
Zhihang Lin, Mingbao Lin, Luxi Lin, Rongrong Ji
How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites
Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang Yan, Hewei Guo, Conghui He, Botian Shi, Zhenjiang Jin, Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian Zhang, Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, Wenhai Wang
SEED-Bench-2-Plus: Benchmarking Multimodal Large Language Models with Text-Rich Visual Comprehension
Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, Ying Shan
List Items One by One: A New Data Source and Learning Paradigm for Multimodal LLMs
An Yan, Zhengyuan Yang, Junda Wu, Wanrong Zhu, Jianwei Yang, Linjie Li, Kevin Lin, Jianfeng Wang, Julian McAuley, Jianfeng Gao, Lijuan Wang
Semantically consistent Video-to-Audio Generation using Multimodal Language Large Model
Gehui Chen, Guan'an Wang, Xiaowen Huang, Jitao Sang