Multimodal Learning
Multimodal learning aims to improve machine learning performance by integrating data from multiple sources, such as text, images, and audio, to create richer, more robust representations. Current research focuses on addressing challenges like missing modalities (developing models resilient to incomplete data), modality imbalance (ensuring fair contribution from all modalities), and efficient fusion techniques (e.g., dynamic anchor methods, single-branch networks, and various attention mechanisms). This field is significant because it enables more accurate and contextually aware systems across diverse applications, including healthcare diagnostics, recommendation systems, and video understanding.
Papers
March 2, 2022
February 18, 2022
February 13, 2022
February 9, 2022
January 19, 2022
December 22, 2021