Multimodal Learning
Multimodal learning aims to improve machine learning performance by integrating data from multiple sources, such as text, images, and audio, to create richer, more robust representations. Current research focuses on addressing challenges like missing modalities (developing models resilient to incomplete data), modality imbalance (ensuring fair contribution from all modalities), and efficient fusion techniques (e.g., dynamic anchor methods, single-branch networks, and various attention mechanisms). This field is significant because it enables more accurate and contextually aware systems across diverse applications, including healthcare diagnostics, recommendation systems, and video understanding.
Papers
A Multimodal Learning Framework for Comprehensive 3D Mineral Prospectivity Modeling with Jointly Learned Structure-Fluid Relationships
Yang Zheng, Hao Deng, Ruisheng Wang, Jingjie Wu
Unveiling the frontiers of deep learning: innovations shaping diverse domains
Shams Forruque Ahmed, Md. Sakib Bin Alam, Maliha Kabir, Shaila Afrin, Sabiha Jannat Rafa, Aanushka Mehjabin, Amir H. Gandomi