Multimodal LLM
Multimodal Large Language Models (MLLMs) aim to integrate diverse data modalities, such as text, images, and video, into a unified framework for enhanced understanding and generation. Current research emphasizes efficient fusion of visual and textual information, often employing techniques like early fusion mechanisms and specialized adapters within transformer-based architectures, as well as exploring the use of Mixture-of-Experts (MoE) models. This field is significant due to its potential to improve various applications, including image captioning, visual question answering, and more complex tasks requiring cross-modal reasoning, while also addressing challenges like hallucinations and bias.
Papers
MM1.5: Methods, Analysis & Insights from Multimodal LLM Fine-tuning
Haotian Zhang, Mingfei Gao, Zhe Gan, Philipp Dufter, Nina Wenzel, Forrest Huang, Dhruti Shah, Xianzhi Du, Bowen Zhang, Yanghao Li, Sam Dodge, Keen You, Zhen Yang, Aleksei Timofeev, Mingze Xu, Hong-You Chen, Jean-Philippe Fauconnier, Zhengfeng Lai, Haoxuan You, Zirui Wang, Afshin Dehghan, Peter Grasch, Yinfei Yang
Multimodal LLM Enhanced Cross-lingual Cross-modal Retrieval
Yabing Wang, Le Wang, Qiang Zhou, Zhibin Wang, Hao Li, Gang Hua, Wei Tang
Towards Unified Multimodal Editing with Enhanced Knowledge Collaboration
Kaihang Pan, Zhaoyu Fan, Juncheng Li, Qifan Yu, Hao Fei, Siliang Tang, Richang Hong, Hanwang Zhang, Qianru Sun