Multimodal Phenomenon
Multimodal research focuses on developing artificial intelligence systems that can effectively process and integrate information from multiple data sources (e.g., text, images, audio, video). Current efforts concentrate on improving the robustness and accuracy of multimodal large language models (MLLMs) through techniques like chain-of-thought prompting, contrastive learning, and multimodal masked autoencoders, often addressing challenges such as hallucination mitigation and efficient resource utilization on edge devices. This field is significant because it enables more comprehensive and nuanced understanding of complex phenomena, with applications ranging from improved medical diagnosis and drug discovery to enhanced human-computer interaction and more effective educational tools. The development of robust benchmarks and open-source tools is also a key area of focus to facilitate collaborative research and development.
Papers
AGIBench: A Multi-granularity, Multimodal, Human-referenced, Auto-scoring Benchmark for Large Language Models
Fei Tang, Wanling Gao, Luzhou Peng, Jianfeng Zhan
Exchanging-based Multimodal Fusion with Transformer
Renyu Zhu, Chengcheng Han, Yong Qian, Qiushi Sun, Xiang Li, Ming Gao, Xuezhi Cao, Yunsen Xian