Nash Equilibrium
Nash equilibrium, a cornerstone of game theory, describes a stable state in a game where no player can improve their outcome by unilaterally changing their strategy. Current research focuses on developing efficient algorithms, such as those based on reinforcement learning, online learning, and Gaussian processes, to compute Nash equilibria in increasingly complex scenarios, including multi-agent systems, Markov games, and games with incomplete information. These advancements are crucial for addressing challenges in diverse fields like robotics, resource allocation, and cybersecurity, where understanding strategic interactions between agents is paramount for designing effective and robust systems.
Papers
Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers
Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, Karl Tuyls
On the convergence of policy gradient methods to Nash equilibria in general stochastic games
Angeliki Giannou, Kyriakos Lotidis, Panayotis Mertikopoulos, Emmanouil-Vasileios Vlatakis-Gkaragkounis