Nested Hypergraphs
Nested hypergraphs extend traditional graphs by allowing edges (hyperedges) to connect any number of nodes, enabling the modeling of complex, higher-order relationships within data. Current research focuses on developing efficient hypergraph neural networks (HGNNs) and algorithms for tasks like node classification, community detection, and influence maximization, often employing message-passing schemes or generative models. This field is significant because hypergraphs offer a more nuanced representation of interconnected systems than graphs, leading to improved performance in diverse applications ranging from social network analysis and bioinformatics to material science and document understanding.
Papers
November 15, 2021