Neural Architecture Search
Neural Architecture Search (NAS) automates the design of optimal neural network architectures, aiming to replace the time-consuming and often suboptimal process of manual design. Current research focuses on improving efficiency, exploring various search algorithms (including reinforcement learning, evolutionary algorithms, and gradient-based methods), and developing effective zero-cost proxies to reduce computational demands. This field is significant because it promises to accelerate the development of high-performing models across diverse applications, from image recognition and natural language processing to resource-constrained environments like microcontrollers and in-memory computing.
Papers
AutoGCN -- Towards Generic Human Activity Recognition with Neural Architecture Search
Felix Tempel, Inga Strümke, Espen Alexander F. Ihlen
HW-SW Optimization of DNNs for Privacy-preserving People Counting on Low-resolution Infrared Arrays
Matteo Risso, Chen Xie, Francesco Daghero, Alessio Burrello, Seyedmorteza Mollaei, Marco Castellano, Enrico Macii, Massimo Poncino, Daniele Jahier Pagliari