Neuromorphic Computing
Neuromorphic computing aims to build energy-efficient computer systems inspired by the brain's architecture, focusing on spiking neural networks (SNNs) that process information via brief electrical pulses. Current research emphasizes improving SNN training methods, particularly addressing challenges in deep network architectures and exploring novel algorithms like surrogate gradients and online learning rules to enhance accuracy and reduce power consumption. This field holds significant promise for advancing artificial intelligence, particularly in resource-constrained applications like robotics and edge computing, by offering substantial improvements in energy efficiency and processing speed compared to traditional computing.
Papers
WaLiN-GUI: a graphical and auditory tool for neuron-based encoding
Simon F. Müller-Cleve, Fernando M. Quintana, Vittorio Fra, Pedro L. Galindo, Fernando Perez-Peña, Gianvito Urgese, Chiara Bartolozzi
SpikingJelly: An open-source machine learning infrastructure platform for spike-based intelligence
Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang, Huihui Zhou, Guoqi Li, Yonghong Tian
How can neuromorphic hardware attain brain-like functional capabilities?
Wolfgang Maass
Multi-level, Forming Free, Bulk Switching Trilayer RRAM for Neuromorphic Computing at the Edge
Jaeseoung Park, Ashwani Kumar, Yucheng Zhou, Sangheon Oh, Jeong-Hoon Kim, Yuhan Shi, Soumil Jain, Gopabandhu Hota, Amelie L. Nagle, Catherine D. Schuman, Gert Cauwenberghs, Duygu Kuzum
The hardware is the software
Jeremie Laydevant, Logan G. Wright, Tianyu Wang, Peter L. McMahon