New Benchmark
Recent research focuses on developing comprehensive benchmarks for evaluating large language models (LLMs) and other machine learning models across diverse tasks, including economic games, financial question answering, graph analysis, and robotic manipulation. These benchmarks aim to standardize evaluation methodologies, address issues like fairness and robustness, and quantify uncertainty in model performance, using various architectures such as transformers and graph neural networks. The resulting standardized evaluations and datasets are crucial for advancing the field by facilitating more rigorous comparisons of models and identifying areas needing improvement, ultimately leading to more reliable and effective AI systems across numerous applications.
Papers
Revisiting RGBT Tracking Benchmarks from the Perspective of Modality Validity: A New Benchmark, Problem, and Method
Zhangyong Tang, Tianyang Xu, Zhenhua Feng, Xuefeng Zhu, He Wang, Pengcheng Shao, Chunyang Cheng, Xiao-Jun Wu, Muhammad Awais, Sara Atito, Josef Kittler
Towards Real-world Video Face Restoration: A New Benchmark
Ziyan Chen, Jingwen He, Xinqi Lin, Yu Qiao, Chao Dong
LVOS: A Benchmark for Large-scale Long-term Video Object Segmentation
Lingyi Hong, Zhongying Liu, Wenchao Chen, Chenzhi Tan, Yuang Feng, Xinyu Zhou, Pinxue Guo, Jinglun Li, Zhaoyu Chen, Shuyong Gao, Wei Zhang, Wenqiang Zhang
Examining the robustness of LLM evaluation to the distributional assumptions of benchmarks
Melissa Ailem, Katerina Marazopoulou, Charlotte Siska, James Bono
Evaluating Large Language Models on Time Series Feature Understanding: A Comprehensive Taxonomy and Benchmark
Elizabeth Fons, Rachneet Kaur, Soham Palande, Zhen Zeng, Tucker Balch, Manuela Veloso, Svitlana Vyetrenko
NormAd: A Benchmark for Measuring the Cultural Adaptability of Large Language Models
Abhinav Rao, Akhila Yerukola, Vishwa Shah, Katharina Reinecke, Maarten Sap
Introducing v0.5 of the AI Safety Benchmark from MLCommons
Bertie Vidgen, Adarsh Agrawal, Ahmed M. Ahmed, Victor Akinwande, Namir Al-Nuaimi, Najla Alfaraj, Elie Alhajjar, Lora Aroyo, Trupti Bavalatti, Max Bartolo, Borhane Blili-Hamelin, Kurt Bollacker, Rishi Bomassani, Marisa Ferrara Boston, Siméon Campos, Kal Chakra, Canyu Chen, Cody Coleman, Zacharie Delpierre Coudert, Leon Derczynski, Debojyoti Dutta, Ian Eisenberg, James Ezick, Heather Frase, Brian Fuller, Ram Gandikota, Agasthya Gangavarapu, Ananya Gangavarapu, James Gealy, Rajat Ghosh, James Goel, Usman Gohar, Sujata Goswami, Scott A. Hale, Wiebke Hutiri, Joseph Marvin Imperial, Surgan Jandial, Nick Judd, Felix Juefei-Xu, Foutse Khomh, Bhavya Kailkhura, Hannah Rose Kirk, Kevin Klyman, Chris Knotz, Michael Kuchnik, Shachi H. Kumar, Srijan Kumar, Chris Lengerich, Bo Li, Zeyi Liao, Eileen Peters Long, Victor Lu, Sarah Luger, Yifan Mai, Priyanka Mary Mammen, Kelvin Manyeki, Sean McGregor, Virendra Mehta, Shafee Mohammed, Emanuel Moss, Lama Nachman, Dinesh Jinenhally Naganna, Amin Nikanjam, Besmira Nushi, Luis Oala, Iftach Orr, Alicia Parrish, Cigdem Patlak, William Pietri, Forough Poursabzi-Sangdeh, Eleonora Presani, Fabrizio Puletti, Paul Röttger, Saurav Sahay, Tim Santos, Nino Scherrer, Alice Schoenauer Sebag, Patrick Schramowski, Abolfazl Shahbazi, Vin Sharma, Xudong Shen, Vamsi Sistla, Leonard Tang, Davide Testuggine, Vithursan Thangarasa, Elizabeth Anne Watkins, Rebecca Weiss, Chris Welty, Tyler Wilbers, Adina Williams, Carole-Jean Wu, Poonam Yadav, Xianjun Yang, Yi Zeng, Wenhui Zhang, Fedor Zhdanov, Jiacheng Zhu, Percy Liang, Peter Mattson, Joaquin Vanschoren
Deep Learning-Based Segmentation of Tumors in PET/CT Volumes: Benchmark of Different Architectures and Training Strategies
Monika Górka, Daniel Jaworek, Marek Wodzinski
AI Competitions and Benchmarks: Dataset Development
Romain Egele, Julio C. S. Jacques Junior, Jan N. van Rijn, Isabelle Guyon, Xavier Baró, Albert Clapés, Prasanna Balaprakash, Sergio Escalera, Thomas Moeslund, Jun Wan
UNIAA: A Unified Multi-modal Image Aesthetic Assessment Baseline and Benchmark
Zhaokun Zhou, Qiulin Wang, Bin Lin, Yiwei Su, Rui Chen, Xin Tao, Amin Zheng, Li Yuan, Pengfei Wan, Di Zhang