New Way
Research on "new ways" in various scientific domains focuses on developing innovative methods and algorithms to improve existing systems and tackle challenging problems. Current efforts span diverse areas, including enhancing robot navigation through object-aware costmaps and improved control systems, optimizing large language model performance via constrained generation and rule accumulation, and advancing image processing techniques using self-supervised learning and differentiable rendering. These advancements hold significant potential for improving the efficiency, robustness, and adaptability of AI systems across numerous applications, from autonomous vehicles and assistive robotics to scientific data analysis and educational tools.
Papers
Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
Shashi Kumar, Iuliia Thorbecke, Sergio Burdisso, Esaú Villatoro-Tello, Manjunath K E, Kadri Hacioğlu, Pradeep Rangappa, Petr Motlicek, Aravind Ganapathiraju, Andreas Stolcke
Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation?
Pedro R. A. S. Bassi, Wenxuan Li, Yucheng Tang, Fabian Isensee, Zifu Wang, Jieneng Chen, Yu-Cheng Chou, Yannick Kirchhoff, Maximilian Rokuss, Ziyan Huang, Jin Ye, Junjun He, Tassilo Wald, Constantin Ulrich, Michael Baumgartner, Saikat Roy, Klaus H. Maier-Hein, Paul Jaeger, Yiwen Ye, Yutong Xie, Jianpeng Zhang, Ziyang Chen, Yong Xia, Zhaohu Xing, Lei Zhu, Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof, Pengcheng Shi, Ting Ma, Yuxin Du, Fan Bai, Tiejun Huang, Bo Zhao, Haonan Wang, Xiaomeng Li, Hanxue Gu, Haoyu Dong, Jichen Yang, Maciej A. Mazurowski, Saumya Gupta, Linshan Wu, Jiaxin Zhuang, Hao Chen, Holger Roth, Daguang Xu, Matthew B. Blaschko, Sergio Decherchi, Andrea Cavalli, Alan L. Yuille, Zongwei Zhou