Novel View Synthesis
Novel view synthesis (NVS) aims to generate realistic images from viewpoints not directly captured, reconstructing 3D scenes from 2D data. Current research heavily utilizes implicit neural representations, such as neural radiance fields (NeRFs) and 3D Gaussian splatting, focusing on improving efficiency, handling sparse or noisy input data (including single-view scenarios), and enhancing the realism of synthesized views, particularly for complex scenes with dynamic elements or challenging lighting conditions. These advancements have significant implications for various fields, including robotics, cultural heritage preservation, and virtual/augmented reality applications, by enabling more accurate 3D modeling and more immersive experiences.
Papers
A Construct-Optimize Approach to Sparse View Synthesis without Camera Pose
Kaiwen Jiang, Yang Fu, Mukund Varma T, Yash Belhe, Xiaolong Wang, Hao Su, Ravi Ramamoorthi
Gaussian Splatting: 3D Reconstruction and Novel View Synthesis, a Review
Anurag Dalal, Daniel Hagen, Kjell G. Robbersmyr, Kristian Muri Knausgård
InstantSplat: Unbounded Sparse-view Pose-free Gaussian Splatting in 40 Seconds
Zhiwen Fan, Wenyan Cong, Kairun Wen, Kevin Wang, Jian Zhang, Xinghao Ding, Danfei Xu, Boris Ivanovic, Marco Pavone, Georgios Pavlakos, Zhangyang Wang, Yue Wang
Snap-it, Tap-it, Splat-it: Tactile-Informed 3D Gaussian Splatting for Reconstructing Challenging Surfaces
Mauro Comi, Alessio Tonioni, Max Yang, Jonathan Tremblay, Valts Blukis, Yijiong Lin, Nathan F. Lepora, Laurence Aitchison
SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior
Zhongrui Yu, Haoran Wang, Jinze Yang, Hanzhang Wang, Zeke Xie, Yunfeng Cai, Jiale Cao, Zhong Ji, Mingming Sun